Planets and Life

Program Offerings

Offering type

Unraveling the origins of life on Earth and determining whether life exists beyond Earth will likely be two of the most significant scientific discoveries in the 21st century. The Program in Planets and Life is an interdepartmental, multidisciplinary plan of study designed for students interested in these two questions. The goal is to provide students with an understanding of the fundamental astrophysical, chemical, biological and geological principles and engineering challenges that will guide our search for life in extreme environments on Earth and on other planets and satellites in the solar system and among neighboring planetary systems. Research on and teaching of these topics are typically performed under the rubric of astrobiology.

The program will equip participating students with the skills they will require to assume leadership roles in discovering the origins of terrestrial and extraterrestrial life over the next decades. The cooperating departments from which the Program in Planets and Life draws faculty and other resources include astrophysics, chemistry, ecology and evolutionary biology, geosciences, mechanical and aerospace engineering, and operations research and financial engineering, as well as the Princeton School of Public and International Affairs.

Goals for Student Learning

Through the core course of the planets and life program, students learn the fundamentals of astronomy, with special focus on planetary science, stellar astrophysics, extrasolar planets and extraterrestrial life. Our core and cognate courses cover a wide variety of associated topics. Students will become critical readers of mainstream media and refereed scientific publications. Participants are given the opportunity to carry out scientific research that is broadly connected to astrobiology. During their work on their junior thesis or the required chapter of their senior thesis, students apply scientific methods to their interest of choice.  Some of our course offerings are hands-on, giving  students the opportunity to study the cosmos with astronomical equipment provided by the Department of Astrophysical Sciences. The program supports a holistic approach to astrobiology, with topics including physics, biology, astronomy, chemistry, and even philosophy. Students participate in the annual Planets and Life Colloquium, where senior students present their work and stimulate scientific discussions.

Admission to the Program

The Program in Planets and Life is open to all A.B. and B.S.E. students. Interested students would normally take AST 255/CHM 255/GEO 255 in their sophomore year.

Program of Study

The following requirements are in addition to those of a student's major. By appropriate choice of courses, a student may satisfy the program and major requirements as well as University distribution requirements. For the certificate, core course and cognate courses may not be taken on a pass/D/fail basis.

  1. Students must take the core course GEO 255/AST 255/EEB 255/CHM 255. This course will qualify for departmental credit if the student submits a 25-page term paper on astrobiology, with the emphasis in that department's discipline.
  2. Students must take an additional four cognate courses. Only two of the cognate courses can be in the student's major or be requirements of their majors (though exceptions can be considered on a case-by-case basis). The cognate courses must be approved by the program chairperson, and students are encouraged to discuss their choices in the early stages of their planning.
  3. To qualify for the certificate, A.B. students must (a) write at least one of the junior papers on an astrobiology topic and, as part of the senior thesis, (b) devote a chapter to an astrobiology topic — both of them subject to approval by the program director in consultation with executive committee members. Engineering students must devote one chapter of their senior independent work to an astrobiology topic — again subject to approval by the program chairperson in consultation with executive committee members. The relevant content of the student's senior thesis or senior independent work will be presented at a special Planets and Life Symposium at the end of senior year. Juniors are also encouraged to participate in this yearly Planets and Life Symposium.

Sample Cognate Courses. Courses in addition to those listed below may also be considered by the committee. To reiterate, while the list provides examples, other courses can be considered to fulfill the certificate requirements, subject to review by the Executive Committee.

Note: An asterisk [*] indicates a one-time-only course.

Astrophysical Sciences (AST)
204 Topics in Modern Astronomy
205 Planets and the Universe
303 Astronomical Methods
301 Thermal Physics
403 Interstellar Medium and Star Formation
514 Stellar Structure
541 Seminar in Theoretical Astrophysics (when appropriate)
542 Seminar in Observational Astrophysics

Chemical and Biological Engineering (CBE)
CHE 245 Introduction to Chemical Engineering Principles
CHE 446 Atmospheric Technology
CHE 447 Biochemical Engineering

Chemistry (CHM)
201 General Chemistry I or 202 General Chemistry II
207 Advanced General Chemistry: Materials Chemistry
215 Advanced General Chemistry: Honors Course
301 Organic Chemistry I: Biological Emphasis or 302 Organic Chemistry II: Biological Emphasis
305 The Quantum World
306 Physical Chemistry: Chemical Thermodynamics and Kinetics
405 Advanced Physical Chemistry: Quantum Mechanics
406 Advanced Physical Chemistry: Chemical Dynamics and Thermodynamics
407 Inorganic Chemistry: Structure and Bonding
408 Inorganic Chemistry: Reactions and Mechanisms
515 Biophysical Chemistry I
539 Introduction to Chemical Instrumentation
542 Principles of Macromolecular Structure (also MOL 542)
544 Metals in Biology (also ENV 544)

Computer Science (COS)
323 Computing for the Physical and Social Sciences

Ecology and Evolutionary Biology (EEB)
210 Evolutionary Ecology (also MOL 210)
211 The Biology of Organisms (also MOL 211)
309 Evolutionary Biology
320 Molecular Evolution (also MOL 330)

Electrical and Computer Engineering (ECE)
351 Electromagnetic Field Theory and Optics
352 Physical Optics
*455 Mid-Infrared Technologies for Health and the Environment (also CEE/MAE/MSE 455)

Geosciences (GEO)
207 A Guided Tour of the Solar System (also AST 207)
361 Physics of the Ocean and Atmosphere (also ENV 361, CEE 360 (STN)
363 Environmental Geochemistry: Natural Systems (also CHM 331, ENV 331)
364 Earth Chemistry: The Major Realms of the Planet (also CHM 364)
371 Global Geophysics (also PHY 371)
372 Earth Materials
417 Environmental Microbiology (also CEE 417, EEB 417)
425 Introduction to Physical Oceanography (also MAE 425)
428 Biological Oceanography
442 Geodynamics (also PHY 442)
523 Geomicrobiology

Molecular Biology
214 Introduction to Cellular and Molecular Biology (also EEB 214)
215 Quantitative Principles in Cell and Molecular Biology (also EEB 215)
345 Biochemistry (also CHM 345)
348 Cell and Developmental Biology

Mechanical and Aerospace Engineering (MAE)
341 Space Flight
342 Space System Design
345 Robotics and Intelligent Systems


GEO 255A Life in the Universe (also AST 255A, EEB 255A, CHM 255A) Fall STN

Introduces students to astrobiology, a new field in which scientists trained in biology, chemistry, astrophysics and geosciences combine their skills to unravel life's origins and to search for extraterrestrial life. Topics include the astrophysical prerequisites for life, the RNA world, the evolution of metabolism and photosynthesis, microbes in extreme environments, and the search for life within our solar system and in nearby solar systems. Two 90-minute lectures are required. Track A will be required to take a mid-term exam during fall break.

Prerequisite: one geoscience, chemistry, biology or astronomy class or instructors' permission.

Certificate of Proficiency

Students who meet the requirements of the program and of their home department will receive a certificate of proficiency in planets and life upon graduation.


  • Director

    • Gáspár Áron Bakos
  • Executive Committee

    • Gáspár Áron Bakos, Astrophysical Sciences
    • Adam S. Burrows, Astrophysical Sciences
    • Christopher F. Chyba, Schl of Public & Int'l Affairs
    • Michael H. Hecht, Chemistry
    • Robert J. Vanderbei, Oper Res and Financial Eng

For a full list of faculty members and fellows please visit the department or program website.