Materials Science and Engineering

Program Offerings

Offering type
Minor

The minor in Materials Science and Engineering is offered by the Princeton Materials Institute. The program emphasizes the multidisciplinary nature of the study of materials and the engineering application of their properties. The program is designed primarily for students in science and engineering departments who are considering careers in materials, or have general interest in materials science and engineering, although students from other disciplines, with appropriate background, may join. Participants in the program will take courses in their own department together with a group of materials courses chosen from a selected list offered by the participating departments and/or the Princeton Materials Institute. Satisfactory completion of the program is recognized by the award of a minor in materials science and engineering upon graduation.

 

Goals for Student Learning

Princeton’s minor in materials science and engineering emphasizes the multidisciplinary nature of the study of materials and the engineering applications of their properties. Program participants learn about the breadth of materials, their synthesis and processing, and the structure-property relationships that make materials the foundation of all “hard” technologies — past, present and future. In addition to lecture courses inside and outside the student’s home department, all program participants take a core course in experimental methods, designed to give students experience in both making and characterizing materials. All program participants also engage in significant independent research, culminating in a senior thesis with substantial materials content. The aim of these experiences is to develop critical thinking skills, to apply these to the solutions of current problems and to identify important areas for future work. The program serves as solid preparation for students planning post-Princeton careers in materials-intensive industries, as well as those intending to study materials science and engineering in graduate school.

Admission to the Program

Admission to the program normally occurs during the spring term of sophomore year or junior year. An application for admission can be obtained from the academic program administrator. Upon acceptance into the program, the director of undergraduate studies assists students in planning a program of study and research that emphasizes the multidisciplinary nature of the materials arena.

Program of Study

Participants in the program will satisfy the degree requirements for their department as well as the course and independent work requirements for the program. A coherent course of study will be developed in conjunction with the program adviser and the director of undergraduate studies and will include program-approved courses outside the student's home department.

The program will be designed to expand the student's knowledge of topics essential for the understanding of materials beyond that normally encountered in a single department. Specific program requirements are listed below.

Additional Requirements

All program students must:

  1. Take one year of general physics (PHY 103, 104, or 105, 106, or apply AP credit), one term of general chemistry with a materials focus and a laboratory (CHM 207, 215, or AP credit; or two terms consisting of the CHM 201/202 sequence) and one year of mathematics (any two courses out of MAT 103, 104, 201, 202, 203 and 204). In addition, a course in quantum mechanics is recommended.
  2. Take one course in thermodynamics (CBE 246, CHM 306, CHM 406, ECE 342, MAE 221, or PHY 301), a core course in materials (MSE 301; CEE 364 or MAE 324 also accepted), and one core course in experimental methods (MSE 302; CHM 371, ECE 308 or GEO 369 also accepted).
  3. Take three additional program-approved courses at or above the 300 level, at least one of which must be from a department/program different from that in which the student is majoring.
  4. Write a senior thesis on a topic with substantial materials content as approved by the program director.
  5. Not more than four of the six course selections outlined in points 2 and 3 above may also be used to satisfy requirements in the major.

To be awarded the minor in materials science and engineering upon graduation, students must achieve a minimum grade average of B- in program electives. Program electives may not be taken on a pass/D/fail basis.

Faculty

  • Director

    • Alejandro W. Rodriguez
  • Executive Committee

    • Emily C. Davidson, Chemical and Biological Eng
    • Jie Deng, Geosciences
    • Andrej Kosmrlj, Mechanical & Aerospace Eng
    • Marcella Lusardi, Chemical and Biological Eng
    • Glaucio H. Paulino, Civil and Environmental Eng
    • Alejandro W. Rodriguez, Electrical & Comp Engineering
    • Aditya Sood, Mechanical & Aerospace Eng
    • Marissa L. Weichman, Chemistry
    • Sanfeng Wu, Physics
    • Saien Xie, Electrical & Comp Engineering
  • Sits with Committee

    • Kai A. Filsinger
    • Nan Yao

For a full list of faculty members and fellows please visit the department or program website.

Courses

MSE 301 - Materials Science and Engineering Spring

An introduction to the structure and properties of important current and future materials, including metals, semiconductors, and polymers from an atomic and molecular perspective. Emphasis will be placed on the phase behavior and processing of materials, and on how structures in these materials impact their macroscopic physical, electrical, and thermal properties. Three lectures. K. Filsinger

MSE 302 - Laboratory Techniques in Materials Science and Engineering Fall SEL

A hands-on introduction to the use of laboratory techniques for the processing and characterization in materials science. Structure-property relations will be explored through experiments in mechanical, optical, biological and electronic properties. The underlying theories and lab techniques will be explained in weekly lectures. The goal of the course is for students to develop a solid understanding of material properties and the common techniques used in research, as well as to gain valuable practice in oral and written presentation. Prerequisite: 301 or equivalent. Two 90-minute lectures, one laboratory. K. Filsinger, N. Yao

CBE 415 - Polymers (also CHM 415/MSE 425) Fall SEN

Broad introduction to polymer science and technology, including polymer chemistry (major synthetic routes to polymers), polymer physics (solution and melt behavior, solid-state morphology and properties), and polymer engineering (overview of reaction engineering and melt processing methods). Two lectures. Prerequisites: CHM 301 or CHM 337, which may be taken concurrently, and MAT 104, or permission of the instructor. R. Register

CEE 361 - Matrix Structural Analysis and Introduction to Finite-Element Methods (also MAE 325/MSE 331) Fall QCR

This course presents the Matrix Structural Analysis (MSA) and Finite Element Methods (FEM) in a cohesive framework. The first half of the semester is devoted to MSA topics: derivation of truss, beam and frame elements; assembly and partitioning of the global stiffness matrix; equivalent nodal loads. The second half covers the following FEM topics: strong and weak forms of boundary value problems, and linear elasticity, Galerkin approximations, constant strain triangle, isoparametric quads. Modern topics will be introduced. MATLAB is used for computer assignments. Prerequisite: CEE205 or MAE223 or permission of instructor. Two 90-min lectures. L. Li

CEE 364 - Materials in Civil Engineering (also ARC 364/MSE 365) Spring SEL

An introductory course on materials used civil and environmental engineering. Lectures on structure and properties of construction materials including concrete, steel, glass and timber; fracture mechanics; strength testing; mechanisms of deterioration; impact of material manufacturing on the environment. Labs on brittle fracture, heat treatment of steel, strength of concrete, mechanical properties of wood. One lecture, one three-hour laboratory. Prerequisites: CEE 205 or MAE223. C. White

ECE 455 - Optical and Photonic Systems for Environmental Sensing (also CEE 455/MAE 455/MSE 455) Spring

This class will teach students about optical and photonic sensing technologies and their applications to environmental monitoring. The course will contain elements of atmospheric science and Earth observation, fundamentals of optics, photonics and laser physics, as well as a survey of modern optical and spectroscopic sensing applications. S. Chou

ENE 267 - Materials for Energy Technologies and Efficiency (also CEE 267/MSE 287) Fall SEN

An introductory course focused on the new and existing materials that are crucial for mitigating worldwide anthropogenic CO2 emissions and associated greenhouse gases. Emphasis will be placed on how materials science is used in energy technologies and energy efficiency; including solar power, cements and natural materials, sustainable buildings, batteries, water filtration, and wind and ocean energy. Topics include: atomic structure and bonding; semiconductors; inorganic oxides; nanomaterials; porous materials; conductive materials; membranes; composites; energy conversion processes; life-cycle analysis; material degradation. C. White

GEO 369 - Environmental Materials Chemistry: Researching in Field and Laboratory (also ENV 388/MSE 369) Spring SEN

The course covers concepts related to the chemistry of inorganic and organic materials found in the pristine and contaminated settings in the Earth surface environments, with an introduction to the modern field sampling techniques and advanced laboratory analytical and imaging tools. Different materials characterization methods, such as optical, infrared, and synchrotron X-ray spectroscopy and microscopy, will also be introduced. Field sampling and analysis of materials from diverse soil and coastal marine environments will be the focus during the second half of the semester. S. Myneni

GEO 378 - Mineralogy (also MSE 348) Not offered this year SEN

Minerals are the fundamental building blocks of the Earth. They are the primary recorders of its past history. A knowledge of minerals and their properties is an essential underlying component of most other disciplines in the geosciences. This course will provide a survey of the properties of the major rock-forming minerals. Topics include crystallography, crystal chemistry, mineral thermodynamics and mineral occurrence. Emphasis will be on the role of minerals in understanding geological processes. Laboratories will focus on hand specimen identification and modern analytical techniques. T. Duffy

MAE 324 - Structure and Properties of Materials (also MSE 324) Fall

An introduction to the properties of engineering materials that emphasizes the correlation between atomic and microscopic structure and the macroscopic properties of the materials. Topics include structural, mechanical, thermodynamic, and design-related issues important to engineering applications. Two lectures, one preceptorial. A. Sood

MAE 344 - Biomechanics and Biomaterials: From Cells to Organisms (also BNG 344/MSE 364) SEN

The fundamental concepts required for the design and function of implantable medical devices, including basic applications of materials, solid mechanics and fluid mechanics to bone/implant systems. The course examines the interfaces between cells and the surfaces of synthetic biomaterials that are used in orthopedic and dental applications. Prerequisites: MAT 103 and 104, and PHY 103 and 104. Three one-hour lectures. D. Cohen